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Abstract—The study of 3D hyperspectral image (HSI) recon-
struction refers to the inverse process of snapshot compressive
imaging when the optical system, e.g., the coded aperture
snapshot spectral imaging (CASSI) system, captures the 3D
spatial-spectral signal and encodes it to a 2D measurement.
Although numerous neural networks have been built for end-
to-end reconstruction, those previous works have a hard time
balancing among performance, efficiency (training and inference
time), and feasibility (the ability to restore high-resolution HSI
on limited GPU memory). In this work, we try to solve this
challenge by creatively proposing SSI-ResU-Net, Spatial/Spectral
Invariant Residual U-Net. The SSI-ResU-Net makes several mod-
ifications compared to U-Net: scale/spectral-invariant learning,
and nested residual learning. Benefiting from these updates,
the SSI-ResU-Net can achieve a trade-off between performance,
efficiency, and feasibility. Apart from that, mask mixture training
and energy normalization are integrated into the process of
generating measurements to increase the ability to generalize
for SSI-ResU-Net. The dataset of this work can be found at
https://www1.cs.columbia.edu/CAVE/databases/multispectral/.

Index Terms—hyperspectral image reconstruction, coded aper-
ture snapshot spectral imaging, snapshot compressive imaging,
Spatial/Spectral Invariant Residual U-Net

I. INTRODUCTION

Hyperspectral imaging defines as multi-channel imaging in
which each channel stores information for a scene [11]. Hyper-
spectral imaging apples widely in medical image processing
[12], remote sensing [13], and object detection [14], [15],
which proves the importance of hyperspectral imaging.

Hyperspectral imaging can be compressed by snapshot
compressive imaging systems and transformed into one 2D
measurement. One of the most popular snapshot compressive
imaging systems is the coded aperture snapshot spectral imag-
ing (CASSI) system, which is the system that will discuss in
detail in this paper.

A large number of algorithms to reconstruct the 2D mea-
surements generated by CASSI have been proposed [3]. The
output of those reconstruction algorithms is hyperspectral
imaging that should be as similar to original hyperspectral
imaging before compressing as possible. End-to-end deep
neural networks have been proved to be an effective method
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to recover the original hyperspectral image and we utilize a
deep neural network named SSI-ResU-net in this project.

A. Motivation of This Project

Although deep neural networks have achieved great success
in HSI reconstruction, there are still many challenges brought
by using deep neural networks. Firstly, due to the lack of a
large hyperspectral imaging dataset, it is easy for complex
deep learning models to become overfitting. Therefore, we
need to simplify the deep neural networks to avoid overfitting.
Secondly, U-Net [1] achieves a great result in hyperspectral
imaging reconstruction but it is specially designed for biomed-
ical image processing. Thirdly, other existing deep learning
models, like TSA-Net [3], can achieve a great performance
too. However, long training time (need several weeks to train
TSA-Net) and inference time are needed for those models
due to their extensive parameters. Next, multiple channels of
higher resolution hyperspectral images can become a large
burden in limited computational resources, which limits the
deployments of deep neural networks under real conditions.
Last but not least, the original SSI-ResU-net lacks generalizing
ability when applied to the new model. We wanted to improve
its robustness to help it can work better in the real industry

B. Contributions of This Project

To alleviate the above challenges, we firstly reimplemented
a modified version of U-Net, SSI-ResU-Net [5]. The result of
reimplementation, which we named as specific training, got a
close result compared with the original paper, indicating the
success of our work.

In the original paper, the SSI-ResU-Net achieves a state-of-
the-art result in hyperspectral imaging through nested residual
learning, spatial/spectral invariance, and computation mini-
mization (SSI-ResU-Net uses 2.82 percent parameters of TSA-
Net with only less than 2 days of training). However, this
great result is only applicable if we use the same mask as the
mask used in the training, meaning that the original SSI-ResU-
Net lacks robustness. To tackle this issue, we implemented
mask mixture training and energy normalization [16]. Those



two changes have been proved to successfully improve the
robustness of the SSI-ResU-Net. Besides, a combination of
those two modifications can further improve the generalizing
ability of SSI-ResU-Net.

II. LITERATURE REVIEW

The basic idea of snapshot compressive imaging (SCI) is
to build a compressive imaging system where multiple frames
are mapped into one single measurement. One representative
application is hyperspectral compressive imaging, which is
mapping a hyperspectral image with hundreds of spectrum
channels to a compressed image representation with only
one channel. In this manner, a compressed representation
will include the information in the high-dimensional signal,
reducing the complexity of storing and transmitting these high-
dimensional images. Also, a high-performance algorithm is
needed to recover the desired data. As a novel implementation
of SCI, CASSI uses a coded aperture and a prism to implement
the spectral modulation and achieve wonderful results in
compression ratio and reconstruction performance.

Inspired by the success that deep learning achieves in
other image translation problems, researchers have been us-
ing deep learning to reconstruct hyperspectral images from
CASSI representations [2], [3], [6]-[10], tending to directly
learn a complete mapping function from measurements (al-
ways packaged with masks) to original HSIs. At the same
time, some researchers manage to introduce CNN models
into conventional optimization algorithms, leading to more
lightweight and interpretable methods. Among all reasonable
models, U-Net [1], a CNN originating from biomedical image
segmentation, has been deemed as a reconstructive backbone
and widely used. For example, the A-net [2] is a dual-
stage generative model which employs a U-Net as its main
model structure. The TSA-Net [3], which combined spatial-
spectral self-attention with U-Net led to excellent results on
both simulation and real data. Recent Gaussian Scale Mixture
Prior-based (GSM-based) baseline [4] employs two U-Net
for different parts: a lightweight U-Net for approximating
the regularization parameters, another lightweight U-Net for
estimating the local-mean of GSM prior. The core idea behind
the success of U-Net is that it combines low-resolution and
high-resolution feature maps via multiple concatenation paths
and thus perfectly matched the big challenges with medical
images.

However, for HSI reconstruction, U-Net only achieves sub-
optimal performance when being solely referred to as a
baseline. Researchers thus generally wrap U-Net into larger
models and make efforts out of U-net, devoting less attention
inside. At the same time, the performance of neural networks is
sensitive to minor adjustments, there existing a “variant” of U-
Net that enables a significant performance boost especially on
HSI reconstruction is a reasonable assumption. Thus, we build
our project on top of a recently proposed variant of U-Net,
which is called SSI-ResU-net [5]. This variant first substitutes
improper partitions with reconstruction-oriented components
to acquire better reconstructive performance and then further

cut off inefficient modules and take actions to reduce FLOPs
in the model to ultimately improve the efficiency and the
feasibility of the proposed model. We will give a detailed
illustration of this model in section III-B.

1II. METHODOLOGY

A. Mathematical Model of CASSI

The hyperspectral image can be expressed as a 3D spectral
cube F' € RN=*NyxNx N Ny, and Ny denote the height of
the image, the width of the image, and the number of wave-
lengths respectively. M* is a pre-defined physical mask that
is used for computing signal Modulation. 2D measurement,
essentially a compressed frame of hyperspectral image, can
be represented as Y € RNe*(Ny+Na—1) while the noise of
the 2D measurement is represented as G € RN=*(Ny+Na=1),

To calculate the measurement Y, we need firstly to shift
signal frames and masks of various wavelengths like the
following formula:

M (u,v,nx) = M*(z,y + d(An = Ac)), (D

Fl('Ll/,'U,n)\) = F(fE,y + d()\n - )\C)) (2)

Based on shifted M € RMNeXNyxNx and F| €

RNexNyXNx " the measurement Y can be expressed as:
N
Y:ZFl(:,:,nA)(DM(:,:,nA)—FG 3)
nx

© means the Hadamard product.

In an attempt to accelerate the computation in the com-
puter, we firstly vectorized the aboved expressions by as-
signing y = wvector(Y) € R", g = wvector(G) € R"
and fl(n)\) = wector(Fi(:,:,ny)) to be the vectorization
of Y, G and Fi(:,:,n)), in which vector(.) concatenates all
columns of a matrix and n = Ny(N, + Ny — 1). Then,
fl(l),f1(2), ...,fl(nA, ...,fl(NA) can be concatenated to form
f= vecﬁor([fl(l),f1(2)7 ...,fl(n,\, ...,fl(N,\]).Next, we defined
the sensing matrix as

¢ =[D1,D3,...,Dp,,..., Dn,] 4)
D,,, = Diag(vector(M(:,:,ny))) is a diagonal matrix ex-
panded by vector(M(:,:,ny.

With the above preparation, we can finally expression
vectorization of matrices Y as:

y=9f+g &)

After obtaining the measurement y and ¢ depending upon
predesign of the camera, we can use the deep learning neural
network to find f to recover the compressed measurement.
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Flow chart of snapshot compressive imaging (by CASSI) and the inverse process. Our reconstruction net is shown in the bottom right yellow box

with all Spatial Upsampling and Spatial Downsampling units, SSI-ResU-Net (v3) in [5]. We adapted this version becuase it requires the least computation

resource.

B. Network Structure

After the compression discussed above, we will have Y €
RN=x(Ny+Na=1) a5 the 2-D compressed representation of the
hyperspectral image and M € RN=*(Ny+Nx=1)xNx a4 shifted
mask. These two information are combined to construct the
model input Fy € RN=*NyXNx by defining

Fy [;,:,ny] :== shift(M,, ©Y) 6)

Here ® is Hadamard product, and shift means the inverse
process of the shifting of channels that are defined in (1).
With this input, the proposed model aims to learn the mapping
function as

fres ()FY%ﬁ @)

Here F denotes the expected reconstruction result. Essen-
tially, this mapping function is trying to approximate ®~!
expressed in a vector space.

Overall, this SSI-ResU-Net shares the same symmetric U-
shape with U-net but contains a huge difference. This network
can be divided into three parts: 1) head block; 2) main body
with residual connection and 3) tail block as shown in fig [ref].
The details of this network will be discussed below.

1) Nested Residual Network: The main body of this model
is a stack of M identical Residual Blocks (RB) which
originates from ResNet[ref]. Each RB contains a CONV-
ReLU-CONV structure with identity connection, which can
be formulized by H,,,(z) = CONV (ReLU(CONV (z)))+x
We name this model as nested residual network because there
are identity connection not only inside, but also outside RB.
There is an extra identity connection from the start to the end
of the body block. Therefore, the whole reconstruction model
can be defined as

fres (Fy) = fait (foody (freaa (FY)) + foead (Fy))  (8)

foody = Hy (Hyr—1 (.. Ha (Ha (fo)) -+ 2)) )

Pure residual learning releases the burden of the mapping
function by reformulating the learning objective and com-
bining feature maps with different resolutions. This nested
residual learning will make resolutions more diverse, thus
leading to better feature extraction.

2) Spatial/Spectral Invariance: In the original U-Net, one
underlying reason for sub-optimal performance is its Maxpool-
ing operations, which lead to a lossy compression regarding
spatial information. It will discard pixels with lower intensities
and also miss location information of pixels of max values.
Therefore, this network turns to creating the mapping function
(DCNN model) in a spatial invariant fashion.

To approximate the 3D signal in a rank minimization man-
ner, previous works attempted to reduce the spectral channels
in the model, which lead to a lossy compression and is
avoided here. The original U-Net tends to enlarge the spectral
dimensions when reducing the spatial size and do vice versa,
which works well for the input image with a single or few
channels. However, it is improper for the reconstructive inputs
that are already packaged with respective large channels (i.e.,
in this work we use 28 channels). Therefore, in the proposed
model, we expand the spectral channel from N, = 28 to
N, = 64 in the head part and keep it the same through the
body part(spectral invariant). The underlying intention of this
augmentation is to increase the spectral-wise redundancy of
intermediate embeddings.

3) Training and Testing: The model is trained to minimize
a mean squared error (MSE) between the ground truth and
output. MSE loss is defined as following

Lrse(© (10

Because of the time and computational resources limitation,
we only do experiments on simulation data instead of both
simulation and real-world data in the original paper. For
simulation experiments, synthetic hyperspectral images are



put through the CASSI system for reconstructing-aimed input
initialization. Therefore, the 3D cube naturally becomes the
ground truth. Training and testing data are separately ab-
stracted from different datasets. The result of our reproduction
on simulation data is similar to the original work produced by
them.

C. Improvements Other than Original Paper

1) Mask Mixture: Mask Mixture Training is a method that
we choose a stochastic mask from the dataset when training
our SSI-ResU-Net.

The reference paper assumes that we know the ground truth
mask in the coded aperture snapshot spectral imaging (CASSI)
system. They used the same mask in the progress of training
and testing to obtain a good result. However, this assumption
is too idealistic in reality, and it is very likely that we do not
know what the ground truth value of the mask is within the
CASSI system. If we use only one mask to train the SSI-ResU-
Net, the results will obviously become relatively poor when
we perform tests on the image generated by another mask.

We propose the Mask Mixture Training method to solve this
problem. It breaks into the following 3 steps.

o Build a mask dataset M contains N masks from different

CASSI system, i.e. initialize M = {m,ma, -+ ,mpy}.

e Choose a stochastic mask m; from dataset M, i.e. ran-

domly select m; € M.

e Train the SSI-ResU-Net with mask m;.

The experiment shows that the Mask Mixture Training
method will improve the robustness of training results, nar-
rowing the gap among highest PSNR and lowest PSNR in
experiments.

2) Energy Normalization: Energy normalization is a tech-
nique used in video snapshot compressive imaging [16]. This
modification can gather energy from every pixel of a video,
bringing more motionless information of video frames, which
proves to be very successful.

Motivated by this idea, we made our mind to bring en-
ergy normalization in our hyperspectral snapshot compressive
imaging. The first step of energy normalization is to sum all
shifted masks into one energy normalization matrix.

N
M =" M(,uny) (11)

TL)\Zl

Each element in M describes how many channels of
F1(u,v,ny) are integrated into the 2D measurement Y. After
that , we normalize the 2D measurement Y by M " to acquire
the energy normalization measurement Y, as:

Yo, =Y oM (12)

© represents element-wise division. It is obvious that Y.,
can have more information about different channels compared
with Y. From another perspective, Y., can be treated as an
average of weighted (M (:,:,n))) summation of images in
different channel (F}(u,v,ny)), containing more information
in different channels.

After we gained the energy normalization measurement Yy,,,
we took the concatenation as our input:

E= [Yen7YenGM(:7:71)7-~-7Y;nQM(:;:aNx\)]3 (13)

[]s means the concatenation along the 3" dimension. It
should be noticed that compared with the original in-

put FyeRN=*NyXNx ' the dimension of new input E is
RmeN1,><(N>\+1)

IV. EXPERIMENTS

In this part, what we mainly focused on is to make a
comparison among SSI-ResU-Net specific mask training, SSI-
ResU-Net mask mixture training, and SSI-ResU-Net energy
normalization training based on PSNR and SSIM.

A. Experimental Settings

The hyperspectral image dataset that we used is as same as
the one used in [3], which ranged from 450nm to 650nm. The
experiment was conducted in the simulation data.

CAVE [16] and KAIST [17] synthetic datasets were ap-
plied in our experiment. In terms of the training set, 205
1024 x 1024 x 28 image instances were created from 30
256 x 256 x 28 images in the CAVE dataset through randomly
concatenating. Data augmentation strategies like rotation and
re-scaling were used to make the training set more robust. In
the end, the training set is composed of 205 256 x 256 x 28
images after randomly concatenating, re-scaling, and rotating.
Ten 256 x 256 x 28 images from the KAIST dataset constitute
the testing set, which will be used to test the training model’s
performance.

We compared the performance of SSI-ResU-Net specific
mask training, SSI-ResU-Net mask mixture training, and SSI-
ResU-Net energy normalization training based on PSNR and
SSIM by two commonly-used criteria, Peak Signal-to-Noise
Racial (PSNR) and Structural Similarity (SSIM). The PSNR
can be calculated by:

MAX?
MSECIL

PSN R, represents the channel-wise PSNR. After computing
PSNR of every channel, we take the average. M AX? is the
maximum pixel value in ground truth image I while M SE,;,
is the mean square error of each channel.

4 different pre-defined physical masks are used in this
experiment for SSI-ResU-Net specific mask training, SSI-
ResU-Net mask mixture training, and SSI-ResU-Net energy
normalization training. It is important to notice that we did
not get the energy normalization mask by summing up these
4 masks. Instead, we firstly shifted them to 28 channels in the
way M (u,v,ny) = M*(z,y+d(A,—A.)) and then added the
28 channel masks to obtain the energy normalization mask.

Based on Tensorflow, we built the SSI-ResU-Net and
adapted Adam as our optimizer. 16 simplified ResBlocks were
put in the main body. Initially, the learning rate was set as
4 x 10~ and the learning rate halved every 50 epochs. The
batch size was set to 4 for our experiment and we trained 200
epochs with Nvidia Tesla T4 GPU for around 15 hours.

PSNRC}L = 1010910( ) (14)



B. Experiments on Synthetic Data

Due to the limit of time and computation resources, we
only did the experiment on the synthetic data. There are four
masks provided by the authors of the original paper and mask
1 is what they used in their original work. Specific training
on mask 1 and test on mask 1 corresponds to their original
works, which can examine whether our reimplementation is
successful or not. The testing results can be found through the
following tables:

to add another experiment to test if the combination of mask
mix training and energy normalization can further improve the
robustness of our model.

TABLE IV
ENERGY NORMALIZATION AND MASK MIXTURE TRAINING
Train Test PSNR SSIM
Train mask 1 Test mask 1 30.14 0.867
Train mask 1 Test mask 2 | 30.48 | 0.873
Train mask 1 Test mask 3 30.20 0.871
Train mask 1 Test mask 4 30.08 0.866

TABLE I
SPECIFIC TRAINING ON MASK 1
Train Test PSNR SSIM
Train mask 1 | Test mask 1 31.20 | 0.890
Train mask 1 | Test mask 2 28.36 0.823
Train mask 1 | Test mask 3 28.06 0.821
Train mask 1 | Test mask 4 27.77 0.815
TABLE 11
ENERGY NORMALIZATION TRAINING ON MASK 1
Train Test PSNR SSIM
Train mask 1 Test mask 1 30.55 | 0.878
Train mask 1 Test mask 2 28.50 0.824
Train mask 1 Test mask 3 28.48 0.826
Train mask 1 Test mask 4 28.59 0.826
TABLE III
MASK MIXTURE TRAINING
Train Test PSNR SSIM
Train mixture | Test mask 1 30.44 0.880
Train mixture | Test mask 2 30.44 0.879
Train mixture | Test mask 3 29.91 0.873
Train mixture | Test mask 4 | 31.11 | 0.886

The overstriking number and underling number represent
the largest number and the smallest number in the column
respectively. The authors of the original paper only completed
the specific training on mask 1 and tested on mask 1, which
is the first row of the table, specific training on mask 1. What
they got was PSNR 31.36dB while our PSNR is 31.20dB after
our reproduction. It only has a small gap with the original
work, proving the success of our reimplementation work.

From the three tables above, We can easily conclude that
mask specific training can achieve the largest PSNR and SSIM
in the test that used the mask for training while it has a large
drop of 3.42 dB in PSNR and 0.075 in SSIM compared with
the lowest PSNR and the lowest SSIM respectively; energy
normalization has a lower PSNR when used the mask for train-
ing to test but it can experience a lower drop in PSNR (2.07
dB) and SSIM (0.052) compared with the lowest PSNR and the
lowest SSIM without using other masks during training; mask
mix training has the strongest robustness because it adapts the
information of other masks during training.

Inspired by the better performance of mask mix training and
energy normalization in terms of generalization, we decided

The result demonstrates that the training model by both
energy normalization and mask mixture has only a drop of 0.4
dB in PSNR and 0.007 in SSIM when compared the highest
and the lowest PSNR and SSIM respectively, the smallest drop
among 4 training models!

Since in the real world, we usually cannot obtain the same
mask that we use in training to test the trained model, it is
meaningful to adapt energy normalization and mask mixture
together during training to increase the generalizing ability of
the trained model.

In an attempt to help readers better understand the whole
process, we visualized the ground truth, energy normalization
reconstructed grayscale images, specific training reconstructed
grayscale images, mixed training reconstructed grayscale im-
ages, and energy normalization and mixed training recon-
structed grayscale images of scene 1 in wavelength=450nm
and wavelength=650nm, shown in the following two figures.

Fig. 2. Comparison of Ground Truth, Specific, Energy Normaliztion, Mixture,
Energy Normalization and Mixture at wavelength=450nm

Fig. 3. Comparison of Ground Truth, Specific, Energy Normaliztion, Mixture,
Energy Normalization and Mixture at wavelength=650nm

V. CONCLUSION

We reviewed the reference paper and explain the simple yet
highly efficient method specially designed for hyperspectral
imaging reconstruction in detail. We built the SSI-ResU-Net
(v3, needing the least computation resource), then trained it,
and finally reproduced a closed result compared to the original
work. What’s more, we proposed two methods, Mask Mixture
Training and Energy Normalization, to improve the robustness
of our model when a different mask that is not used during
the training, is applied. Last but not least, we combine those



two modifications and their cooperation can further increase
the generalizing ability of our trained SSI-ResU-Net.
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testing for mask mixture and energy normalization training.
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